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Hierarchical mean-field rate equations and lattice-gas simulations were developed to elucidate the effects of
the breakdown of the mean-field approximation for a model heterogeneous chemical oscillator that represents
a simple extension of the well-known monomer-dimer surface reaction model. The bifurcation structure of the
reaction kinetics depends sensitively on the details of surface transport processes, and the oscillatory behavior
exhibited by the site approximation rate equations is not generally robust with respect to spatial correlations.
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INTRODUCTION

Surface reaction schemes with elementary steps involving
neighboring pairs of adsorption sites and adsorbates~e.g.,
dissociative adsorption! can be exactly represented only by
an infinite hierarchy of coupled rate equations that describe
progressively larger configurations of reactants@1–3#. The
traditional approach to overcoming this closure problem is to
invoke the mean-field site approximation~SA!, which re-
quires that the probability of finding a given adsorption site
in a particular occupation state be independent of the occu-
pation states of neighboring sites. This condition implies that
transport processes are sufficiently rapid so that the surface is
microscopically well mixed. However, such an assumption is
not always warranted, as in the case of CO oxidation, where
oxygen can be strongly bound to the surface@4#.

During the past decade, the effects of the breakdown of
the SA on the bifurcation structure of catalytic surface reac-
tions have attracted considerable attention. Most of this work
has been directed toward the monomer-dimer model, which
mimics some aspects of CO oxidation. The scheme consists
of the Langmuir-Hinshelwood mechanism

A1V↔
1

A~ad!, ~1a!

B212V→
2

2B~ad!, ~1b!

A~ad!1B~ad!→
3

AB12V, ~1c!

whereV represents a vacant adsorption site and processes
~1b! and ~1c! are implicitly assumed to occur at nearest-
neighbor pairs of sites. The non-mean-field behavior of this
reaction was explored by Ziff, Gulari, and Barshad, who in-
troduced a stochastic lattice-gas implementation of the model
~the ZGB model! with an infinite reaction rate (k35`) and

irreversible monomer adsorption (k2150) @5#. Their results
showed that spatial correlations can have significant effects
on the structure of the reaction kinetics. For example, the SA
equations corresponding to the ZGB model predict reaction-
adsorption isotherms that display bistability between a reac-
tive and anA-poisoned state@6#. In contrast, the ZGB model
predicts a first-orderA-poisoning transition with associated
metastability as well as a second-orderB-poisoning transi-
tion @5#. Such discrepancies between SA and lattice-gas pre-
dictions have inspired efforts to model the behavior of sur-
faces with intermediate degrees of mixing and to develop a
unified treatment of surface reaction kinetics@4,6–11#. How-
ever, little is known about the breakdown of the SA for re-
action schemes with more complicated dynamics than the
monomer-dimer model, which exhibits only fixed-point be-
havior and bistability. The purpose of this paper is to delin-
eate some effects of spatial correlations on an oscillatory
surface reaction model by comparing the predictions of
mean-field rate equations and lattice-gas simulations.

MODEL

Although the monomer-dimer model~1a!–~1c! does not
support periodic behavior, it can be modified in one of sev-
eral ways so that it does predict oscillatory solutions. These
include allowing the reaction product to desorb at a finite
rate@12#, relaxing the isothermal assumption@13#, or adding
a reversibly adsorbing inert species@14#. In this work we
consider the latter model by adding the reversible adsorption
step

C1V↔
4

C~ad! ~1d!

to the reaction mechanism~1a!–~1c!.

MEAN-FIELD SITE APPROXIMATION

A simple site approximation representation of processes
~1a!–~1d! can be developed by invoking the following as-
sumptions: isothermal conditions, instantaneous product de-
sorption, no mass transfer resistance between the fluid and
catalyst, energetically homogeneous adsorption sites, no ad-
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sorbate interactions beyond site exclusion, and constant gas
phase composition and volume. On a square lattice of ad-
sorption sites, the resulting dimensionless rate equations are
given by

duA
dt

5auV2guA24uAuB , ~2a!

duB
dt

52buV
224uAuB , ~2b!

duC
dt

5luV2huC , ~2c!

whereu i is the fraction of adsorption sites occupied by spe-
cies i and the vacant site fraction obeysuV512uA
2uB2uC . If the total density of adsorption sites isS0, the
dimensionless time is given byt5k3S0t and five dimension-
less parameters are related to the adsorption and reaction rate
constants, as shown in Table I. Notice that bothg and h
depend primarily on the reaction and desorption rate coeffi-
cients, which are generally functions of temperature. There-
fore, from a practical standpoint, it is not possible to manipu-
late the value of either of these parameters without
simultaneously causing all other parameters to change as
well, since every dimensionless parameter depends upon the
reaction rate constant. In contrast,a, b, andl are addition-
ally proportional to concentrations of gas phase species,
which in principle can be varied independently. Therefore,
for fixed temperature, onlya, b, andl are appropriate bi-
furcation parameters.

As a consequence of the assumption thatB2 adsorbs irre-
versibly, Eq. ~2b! dictates that the adsorbed dimer can be
removed from the surface only by reaction. This leads to the
existence of a trivialB-poisoned stateuB51,uA5uC50.
AnalogousA- orC-poisoned states do not exist since adsorp-
tion of these species is taken to be reversible. Nontrivial
steady-state solutionsū i can readily be found from Eqs.
~2a!–~2c! and are given implicitly by

ū B
31F a

2bh
~l1h!12g21G ū B

2

1F ag

2bh
~l1h!1g~g22!1

a2

2b G ūB2g250, ~3a!

ūA5
ah~12 ūB!

~ ūB1g!~l1h!1ah
, ~3b!

ūC5
l~12 ūA2 ūB!

l1h
. ~3c!

Note that in the limitb→`, Eq. ~3a! has a single real posi-
tive root that approaches theB-poisoned stateūB51. Except
in this asymptotic limit, the poisoned state is locally unstable
and therefore it will not be considered further. For finite
values ofb, Eq. ~3a! has either one or three real positive
roots and some conditions exist for which a cusp bifurcation
occurs.

The bifurcation structure of Eqs.~2a!–~2c! can be studied
with continuation techniques. The software packageAUTO

developed by Doedel and Wang@15# was employed for this
purpose, and the reliability of the calculations was verified
by direct numerical integration of Eqs.~2a!–~2c!. Figure 1
shows a typical bifurcation diagram ina-b parameter space.
The cusp and loop structures are common features of both
homogeneous and heterogeneous chemical oscillators.
Fixed-point bistability boundaries~solid lines! are formed by
a locus of saddle-node bifurcation points that terminate in a
cusp. Hopf points form a loop~broken lines! that ends at
degenerate double-zero eigenvalue bifurcations on each
saddle-node branch. The Hopf and saddle-node points divide
parameter space into several regions~some of which are very
small! with qualitatively distinct reaction-adsorption iso-
therms, and some of these regions can be subdivided further
by plotting the locus of limit cycle branch saddle nodes.

MEAN-FIELD PAIR APPROXIMATION

A higher-order truncation of the hierarchical rate equa-
tions can be derived by considering the occupancy of neigh-
boring pairs of sites, which are assumed to be randomly
distributed on the surface. The resulting mean-field model is

TABLE I. Dimensionless parameters. The quantitypi represents
the gas phase partial pressure of speciesi .

a5
k1pA
k3S0

g5
k21

k3S0

b5
k2pB2
k3

l5
k4pC
k3S0

h5
k24

k3S0

FIG. 1. Bifurcation diagram ina-b parameter space. Solid lines
represent the locus of saddle nodes, terminating in a cusp. Dotted
lines represent Hopf points, which terminate at double-zero eigen-
value bifurcations~not shown!. Other parameters values used to
construct the figure areg50.04,l50.36, andh50.016.
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known as a pair approximation~PA! @1–3# and it accounts
for nearest-neighbor spatial correlations in the distribution of
reactants. One definesNi j to be the number of pairs of sites
occupied by speciesi and j . Since a square lattice ofN sites
with periodic boundaries has 2N nearest-neighbor pairs, the
fractional pair coverages are defined asXi j5Ni j /2N. Conser-
vation equations for theXi j can be constructed by calculating
the rate of change of each pair type for each elementary step
of the mechanism. For example, dimer adsorption~1b! oc-
curs at a ratek2XVV and can be represented schematically as

X X X X

X V V X ——→
k2

X B B X ,

X X X X

whereX represents a site that can be in any occupation state.
Nearest-neighbor pairs that are potentially affected by this
process includeAV, BV, CV, VV, AB, BB, andBC. In
order to calculate changes in the pair coverages, one must
know the conditional probabilityP( j u i ) of finding a neigh-
boring site in occupation statej given a site in occupation
statei . For a square lattice these probabilities are given by
@1#

P~ j u i !5H Xi j

2u i
, iÞ j

Xi j

u i
, i5 j

~4!

and the changes in pair coverage fractions follow easily from
Eq. ~4!. For example,B2 adsorption can result in the loss of
at most sixAV pairs, so we write

dXAV
dt U

~1b!

5
1

2N

dNAV

dt
52

3k2XVVXAV

2uV
, ~5!

whereu i5Xii1
1
2( iÞ jXi j . Proceeding in this way for each

elementary step of the reaction, dimensionless rate equations
for the evolution of the coverage of ten possible pair types
can be derived.

The intermediate behavior between the pair and site ap-
proximations can be studied by incorporating surface trans-
port processes into the PA. For example, one can allow the
hopping process

X X X X

X Y V X ——→
dY

X V Y X ,

X X X X

whereY represents an adspecies. Complete dimensionless
PA equations that include terms to account for adsorbate
hopping are given in the Appendix. From these, it can be
shown that asdi→`, spatial fluctuations are destroyed, the
pair fractions are given by

Xi j5H 2u iu j , iÞ j

u i
2 , i5 j ,

~6!

and the site approximation is recovered from the pair equa-
tions.

Computations using the PA equations described above
show that nearest-neighbor correlations can destroy the os-
cillatory structures predicted by the SA. For example, Fig.2
shows reaction-adsorption isotherms calculated from the SA
and the PA for the case that all adspecies have identical
hopping constants (dA5dB5dC). When no adsorbate hop-
ping is allowed, the PA predicts only fixed-point solutions.
However, as the hopping constants are increased, the PA
predictions converge to the SA and oscillatory solutions are
recovered. For the parameters used to construct Fig. 2, oscil-
latory behavior was found for approximatelydi /k3.10. No-
tice that the pure pair approximation (di50) predicts a small
region of bistability between a reactive and aB-poisoned
state. The existence of a discontinuous dimer poisoning tran-
sition in this model contrasts with the PA predictions for the
simpler monomer-dimer model, which exhibits a second-
order dimer poisoning transition.

The PA predictions for the more general case of unequal
hopping rates have also been considered. For example, Fig. 3
shows reaction-adsorption isotherms for the three cases in
which only one adspecies is mobile; all other parameter val-
ues are the same as in Fig. 2. Notice that the pair equations
fail to predict oscillatory structures for all of these situations,
regardless of how large the hopping rate of the mobile ad-
species becomes. Furthermore, the structure of the reaction-
adsorption isotherms depends upon which species is taken to
be mobile. For example, when the monomerA is the hopping
species, a region of bistability exists for all values ofdA and
dimer poisoning occurs at a finite value ofb, the dimension-
less partial pressure ofB2. In contrast, when the dissociated

FIG. 2. Reaction-adsorption isotherms showing the convergence
of the pair approximation and site approximation at high hop rates
when all adspecies have identical hopping rate constants. The
curves from left to right represent the pair approximation with
di /k350,1,10,50. The last curve shows the SA prediction. Solid
lines represent stable fixed-point solutions, dashed lines represent
unstable fixed points, and dotted lines show maxima and minima of
stable limit cycle solutions. Other parameter values used to con-
struct the figure area51.6,g50.04,l50.36, andh50.016.

54 1227OSCILLATORY DYNAMICS IN A HETEROGENEOUS . . .



dimerB is taken as the mobile species, multiple steady states
do not exist except when the hopping rate constantdB is
nearly zero.

Different results are obtained when it is assumed that only
one species is immobile while the other two species have
identical hopping rate constants. The results for the three
possible combinations are illustrated in Fig. 4. In all three
cases, the oscillatory dynamics predicted by the SA can be
recovered by sufficiently increasing the value of the hopping
rate constants. However, again the character of the reaction-
adsorption isotherms depends upon which species is taken to
be immobile. As an example, consider the scenario where the
inert monomerC is immobile. Figure 4~c! shows that when
dA /k35dB /k351, a unique steady state exists for allb.
Since the pair equations with no surface hopping predict a
narrow region of bistability~Fig. 2!, it appears that increas-
ing these two dimensionless hop rate constants from zero to

1 leads to an unfolding of the bistability loop. However, after
further increasingdA /k35dB /k3510, a hysteresis loop ap-
pears. Subsequent increases indA and dB again unfold the
hysteresis loop and the limit cycle behavior predicted by the
SA emerges. In contrast, bistability is not observed in Fig.
4~a! for any of the dimensionless hop rate constants consid-
ered.

LATTICE-GAS SIMULATIONS

In principle, higher-order truncations of the hierarchical
rate equations, such as the triplet approximation, can also be
developed. In practice, however, the resulting sets of equa-
tions are too unwieldy. Therefore, a stochastic lattice-gas
implementation of processes~1a!–~1d! was employed.

A question that arises in developing any surface reaction
lattice-gas simulation is how one relates the mean-field ex-
pressions for the rate of an elementary step of the reaction

FIG. 3. Pair approximation predictions for the case in which
only one adspecies is mobile. The adsorbed monomer is mobile in
~a!, the dimer is mobile in~b!, and the inert is mobile in~c!. The
three curves in each plot from left to right represent reaction-
adsorption isotherms fordi /k351,10,100, respectively. Larger val-
ues of the dimensionless hopping constants do not give significantly
different results. Other parameters are the same as those used to
construct Fig. 2.

FIG. 4. Pair approximation predictions for the case in which
only one adspecies is immobile and the hopping constants of the
other two species are identical. The adsorbed monomer is immobile
in ~a!, the dimer is immobile in~b!, and the inert is immobile in~c!.
The three curves in each plot from left to right represent reaction-
adsorption isotherms fordi /k351,10,100, respectively. Other pa-
rameters are the same as those used to construct Fig. 2.
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mechanism to the rate at which a particular discrete event
occurs in the lattice-gas simulation. This question has con-
siderable relevance because it is desirable to compare the
dynamic behavior of lattice-gas simulations with the predic-
tions of mean-field rate equations.

The usual method for maintaining correspondence be-
tween the rate equations and the simulations involves~i! se-
lecting sites at random and~ii ! attempting the various el-
ementary processes with the appropriate probabilities at the
chosen sites. The algorithm implemented in this study re-
verses the above procedure. The rates of the elementary pro-
cesses were first calculated by examining the state of the
lattice. For example, the instantaneous rates of monomer and
dimer adsorption were calculated asauV and 2bXVV , re-
spectively. These rates were then used to select events with
appropriate probabilities, and the selected events were ex-
ecuted at suitable randomly chosen sites. By requiring that
one unit of Monte Carlo time~defined asN iterations of the
algorithm, whereN is the total number of lattice sites! cor-
respond to one unit of dimensionless timet, it was possible
to execute events in the simulation randomly, but also in a
manner that preserved the meanings of the dimensionless
rate constants used in the mean-field formulations.

The simulation was first tested by ignoring spatial corre-
lations on the lattice. This was accomplished by eliminating
the nearest-neighbor~NN! requirements for dimer adsorption
and monomer-dimer reaction, thereby resulting in a stochas-
tic implementation of the SA equations. Representative
simulations are presented in Fig. 5, which shows the effects
of lattice size on time series predictions for a case in which
the SA yields limit cycle oscillations. Notice that as the lat-
tice size~and therefore the statistical base! increases, statis-
tical fluctuations decrease and the lattice-gas simulations ap-
proach the mean-field SA predictions. These findings agree
with the expectation that deviations from the mean-field site
approximation are caused by multisite processes and, for fi-
nite systems, statistical fluctuations.

Because multisite processes are responsible for the break-
down of the site approximation, it is of interest to determine
the relative importance of each such process in producing
these deviations. This can be accomplished by eliminating
the NN requirement for either dimer adsorption or reaction,
while retaining the requirement for the other process. Predic-
tions from such simulations are shown in Fig. 6 and they
illustrate the significantly different impacts that NN require-
ments for dimer adsorption and reaction have on the overall
behavior. In particular, when the NN requirement for dimer
adsorption is neglected~this is similar to the random dimer
adsorption model introduced by Tammaro and Evans@16#!,
the resulting reaction-adsorption isotherm closely approxi-
mates the SA prediction. In contrast, elimination of the NN
requirement for reaction leads to large discrepancies between
the lattice-gas simulations and the mean-field results. Most
noticeably, the lattice-gas simulations predict a much lower
steady-state surface coverage by the adsorbed dimer. The
reason for this large deviation is that NN reactions are a
source of NN vacancies; the presence of the latter is neces-
sary for dimer adsorption to proceed. In the present case the
removal of the NN requirement for reaction results in the
production of far fewer vacant pairs suitable for dimer ad-
sorption. These observations suggest that~for the parameter
set studied! the NN requirement for dimer adsorption is the
major cause of the breakdown of the site approximation.

When the NN requirements for both dimer adsorption and
reaction are retained, behavior similar to that exhibited by
the pair approximation is found. For example, Fig. 7 illus-
trates the effects of allowing adspecies to hop to nearest-
neighbor vacant sites, for the casedA5dB5dC . The result-
ing reaction-adsorption isotherms are nearly identical to
those predicted by the pair equations for the same parameter
set~Fig. 2!. However, because the lattice-gas simulations are
susceptible to random fluctuations, it can be difficult to de-
tect the onset of kinetic oscillations. Therefore, three curves
for each value of the dimensionless hopping constant were
plotted in Fig. 7. The central curves~broken lines! represent

FIG. 5. Time series showing the effect of lattice size on lattice-
gas simulations with no nearest-neighbor requirements for both
dimer adsorption and reaction. The solid line represents the SA
prediction. Other curves represent lattice-gas simulations on an
L3L periodic square lattice, for various values ofL as indicated.
Parameter values used to construct the figure areb520.8,a51.6,
g50.04,l50.36, andh50.016.

FIG. 6. Comparison of SA predictions~solid line! with lattice-
gas simulations when the nearest-neighbor requirement is retained
only for a reaction~dotted line! and when it is retained only for
dimer adsorption~dashed line!. Parameter values used to construct
the figure area51.2,g50.04,l50.36, andh50.016.
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the time-averaged steady-stateB coverage; each of these is
bracketed by two solid curves that represent the time-
averaged coverage plus~minus! the variance divided by the
mean. Figure 7 clearly shows that large excursions from the
time-averaged coverage~indicative of kinetic oscillations! do
not emerge untildi /k3 is increased to'16, which is similar
to the value ofdi /k3'10 found from the pair approximation.
Also, notice that the discontinuous dimer poisoning transi-
tion predicted by the pair equations for low hop rates is also
observed in the lattice-gas simulations.

MINIMUM DIFFUSION COEFFICIENT
FOR OSCILLATIONS

The adsorbate hopping mechanism employed in the
lattice-gas simulations and in the pair approximation can be
related to Fickian diffusion by either solving the problem of
random walk or by following the analysis of Kutner@17#.
The hopping constantd ~assumed to be identical for all spe-
cies! is directly proportional to the diffusivityD through the
relation

d5
D

l 2
, ~7!

wherel is the lattice constant. If we taked/k3'10 ~the ap-
proximate value for oscillatory behavior to be supported by
the pair equations and lattice-gas simulations!, then one ex-

pects that the minimum value of the macroscopic surface
diffusion coefficient required to observe oscillations for this
reaction model is given by

D'10k3l
2. ~8!

SUMMARY AND DISCUSSION

Three approaches have been employed to model a simple
Langmuir-Hinshelwood reaction:~i! traditional mean-field
site approximation rate equations,~ii ! mean-field pair ap-
proximation rate equations, and~iii ! lattice-gas simulations.
The oscillatory solutions predicted by the mean-field SA rate
equations are not robust with respect to spatial correlations;
both the PA equations~which account for nearest-neighbor
correlations! and the lattice-gas simulations~which account
for correlations on all length scales! fail to duplicate the
periodic solutions.

The crossover behavior between the latter approaches and
the SA was studied by incorporating an adspecies hopping
mechanism. The structure of the kinetics for these interme-
diate degrees of ‘‘mixing’’ on the surface depends sensi-
tively upon both the relative and absolute mobilities of the
adspecies. Specifically, when all adspecies are mobile, the
predictions of the SA, including kinetic oscillations, can be
recovered when the ratio of the hopping constant to the re-
action rate constant approximately satisfiesd/k3.10. How-
ever, if only one adspecies has significant surface mobility,
the SA solutions cannot be approached even as the ratio of
the hopping constant to the reaction rate constant becomes
very large. These findings suggest that the use of SA rate
equations to model real surface reaction schemes may not be
appropriate when one or more species is strongly adsorbed.

A comparison of the PA and lattice-gas results reveals
little qualitative difference~apart from the random fluctua-
tions inherent in the lattice-gas simulation! and only small
numerical discrepancies between their predictions. This ap-
parent similarity is a consequence of the fact that the reaction
mechanism involves only single- and dual-site processes;
one might expect that greater disparity between the PA and
the lattice-gas simulations would be observed for reaction
mechanisms with processes involving three or more neigh-
boring sites.

Finally, we note that the destruction of oscillatory behav-
ior with the introduction of spatial correlations in the present
model contrasts with analogous studies of predator-prey ki-
netics. In particular, Satulovsky and Tome´ have shown that
the breakdown of the mean-field approximation can lead to
the introduction of periodic behavior in a system that would
otherwise only display fixed-point solutions@18#. This im-
plies that the consequences of introducing spatial correla-
tions in surface reaction kinetics may depend strongly on the
details of the reaction mechanism.

ACKNOWLEDGMENT

The authors thank Professor James Evans at Iowa State
University for helpful discussions.

FIG. 7. Reaction-adsorption isotherms showing the convergence
of the lattice-gas simulations and the site approximation when all
adspecies have identical hopping rate constants. The curves from
left to right show lattice-gas results fordi /k350,1,4,16. The last
curve shows the SA prediction. For each lattice-gas simulation,
three lines are plotted. The central line~dashed! represents the time-
averagedB coverage at steady state; these are bracketed by solid
lines that are the time-averaged coverage6 the variance divided by
the mean. Parameter values used to construct the figure are the same
as for Fig. 2.
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APPENDIX: GENERALIZED DIMENSIONLESS PAIR
APPROXIMATION EQUATIONS

dXAV
dt

52aXVV12gXAA1hXAC1
3XABXAA

uA
1
3XAB

2

2uB

2XAVS a1l1g1
3bXVV

2uV
1
3XAB

2uA
D1

3sAXAV

2

3S 2XAA

uA
1
2XVV

uV
2
XAV

uA
2
XAV

uV
D1

3sBXBV

2

3SXAB

uB
2
XAB

uV
D1

3sCXCV

2 SXAC

uC
2
XAV

uV
D , ~A1!

dXAA
dt

5aXAV22gXAA2
3XABXAA

uA

1
3sAXAV

2 SXAV

uV
2
2XAA

uA
D , ~A2!

dXAB
dt

5aXBV2~g11!XAB1
3bXAVXVV

2uV
2
3XAB

2

2 S 1uA 1
1

uB
D

1
3sAXAV

2 SXBV

uV
2
XAB

uA
D1

3sBXBV

2 SXAV

uV
2
XAB

uB
D ,

~A3!

dXAC
dt

5aXCV1lXAV2~g1h!XAC2
3XABXAC

2uA

1
3sAXAV

2 SXCV

uV
2
XAC

uA
D1

3sCXCV

2 SXAV

uV
2
XAC

uC
D ,

~A4!

dXBV
dt

5gXAB1hXBC2~a1l!XBV1
3XAB

2

2uA

1
3bXVV

2uV
~2XVV2XBV!1

3XAB

2uB
~2XBB2XBV!

1
3sAXAV

2 SXAB

uA
2
XBV

uV
D1

3sBXBV

2 S 2XBB

uB
1
2XVV

uV

2
XBV

uB
2
XBV

uV
D1

3sCXCV

2 SXBC

uC
2
XBV

uV
D , ~A5!

dXBB
dt

5 1
2 bXVV1

3bXVVXBV

2uV
2
3XABXBB

uB

1
3sBXBV

2 SXBV

uV
2
2XBB

uB
D , ~A6!

dXBC
dt

5lXBV2hXBC1
3bXVVXCV

2uV
2
3XABXBC

2uB

1
3sBXBV

2 SXCV

uV
2
XBC

uB
D

1
3sCXCV

2 SXBV

uV
2
XBC

uC
D , ~A7!

dXCV
dt

52lXVV12hXCC1gXAC2~a1l1h!XCV

2
3bXVVXCV

2uV
1
3XAB

2 SXBC

uB
2
XAC

uA
D

1
3sAXAV

2 SXAC

uA
2
XCV

uV
D1

3sBXBV

2 SXBC

uB
2
XCV

uV
D

1
3sCXCV

2 S 2XCC

uC
1
2XVV

uV
2
XCV

uC
2
XCV

uV
D , ~A8!

dXCC
dt

5lXCV22hXCC1
3sCXCV

2 SXCV

uV
2
2XCC

uC
D , ~A9!

( Xi j51. ~A10!

The dimensionless parameters in Eqs.~A1!–~A9! are de-
fined as a5k1pA /k3 , b5k2pB2 /k3 , g5k21 /k3 ,

l5k4pC /k3 , h5k24 /k3 , ands i5di /k3.
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