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Oscillatory dynamics in a heterogeneous surface reaction:
Breakdown of the mean-field approximation

R. Dennis Vigir and Frank T. Willmoré
Department of Chemical Engineering, lowa State University, Ames, lowa 50011-2230
(Received 1 April 1996

Hierarchical mean-field rate equations and lattice-gas simulations were developed to elucidate the effects of
the breakdown of the mean-field approximation for a model heterogeneous chemical oscillator that represents
a simple extension of the well-known monomer-dimer surface reaction model. The bifurcation structure of the
reaction kinetics depends sensitively on the details of surface transport processes, and the oscillatory behavior
exhibited by the site approximation rate equations is not generally robust with respect to spatial correlations.
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INTRODUCTION irreversible monomer adsorptiok (;=0) [5]. Their results
showed that spatial correlations can have significant effects
Surface reaction schemes with elementary steps involvingn the structure of the reaction kinetics. For example, the SA
neighboring pairs of adsorption sites and adsorb&eg., equations corresponding to the ZGB model predict reaction-
dissociative adsorptioncan be exactly represented only by adsorption isotherms that display bistability between a reac-
an infinite hierarchy of coupled rate equations that describéive and anA-poisoned statg6]. In contrast, the ZGB model
progressively larger configurations of reactafits-3]. The predicts a first-ordeA-poisoning transition with associated
traditional approach to overcoming this closure problem is tanetastability as well as a second-ord&ipoisoning transi-
invoke the mean-field site approximatid8A), which re-  tion[5]. Such discrepancies between SA and lattice-gas pre-
quires that the probability of finding a given adsorption sitedictions have inspired efforts to model the behavior of sur-
in a particular occupation state be independent of the occufaces with intermediate degrees of mixing and to develop a
pation states of neighboring sites. This condition implies thaunified treatment of surface reaction kinetids6—11]. How-
transport processes are sufficiently rapid so that the surface &ver, little is known about the breakdown of the SA for re-
microscopically well mixed. However, such an assumption isaction schemes with more complicated dynamics than the
not always warranted, as in the case of CO oxidation, wherenonomer-dimer model, which exhibits only fixed-point be-
oxygen can be strongly bound to the surfade havior and bistability. The purpose of this paper is to delin-
During the past decade, the effects of the breakdown ofate some effects of spatial correlations on an oscillatory
the SA on the bifurcation structure of catalytic surface reacsurface reaction model by comparing the predictions of
tions have attracted considerable attention. Most of this worknean-field rate equations and lattice-gas simulations.
has been directed toward the monomer-dimer model, which
mimics some aspects of CO oxidation. The scheme consists MODEL
of the Langmuir-Hinshelwood mechanism
Although the monomer-dimer modé¢la—(1c) does not

1 support periodic behavior, it can be modified in one of sev-
A+V—A(ad), (1a) eral ways so that it does predict oscillatory solutions. These
include allowing the reaction product to desorb at a finite

2 rate[12], relaxing the isothermal assumptifiB], or adding

B,+2V—2B(ad), (1b)  a reversibly adsorbing inert specigk4]. In this work we
consider the latter model by adding the reversible adsorption

3 step
A(ad +B(ad—AB+2V, (10
4
whereV represents a vacant adsorption site and processes C+V«C(ad) (1d)

(1b) and (1¢) are implicitly assumed to occur at nearest-
neighbor pairs of sites. The non-mean-field behavior of thiso the reaction mechanisitia)—(1c).
reaction was explored by Ziff, Gulari, and Barshad, who in-
troduced a stochastic lattice-gas implementation of the model
. S . MEAN-FIELD SITE APPROXIMATION
(the ZGB model with an infinite reaction ratekg =) and
A simple site approximation representation of processes

(1a—(1d) can be developed by invoking the following as-

:Author to whom correspondence should be addressed. sumptions: isothermal conditions, instantaneous product de-
Present address: Department of Chemical Engineering, Universorption, no mass transfer resistance between the fluid and
sity of Texas, Austin, TX 78712. catalyst, energetically homogeneous adsorption sites, no ad-
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sorbate interac.ti'ons beyond site exclusion, and coinstant 98S £1G. 1. Bifurcation diagram -8 parameter space. Solid lines
phas_e Cor_nposrﬂon anclj _voILér_ne. O.n all square Iattlce_ of adr'epresent the locus of saddle nodes, terminating in a cusp. Dotted
SQrptIOI’] sites, the resulting dimensioniess rate equations affeg represent Hopf points, which terminate at double-zero eigen-
given by value bifurcations(not shown. Other parameters values used to
do construct the figure arg=0.04,\=0.36, and»=0.016.
A

F=a0\/—y0A—40A6'B, (Za) _
— 1-6
de ba= 9_+m7()\+ B)+ ' (3b)
d_TB:2B0\2/_40A03’ (2b) (B 7)( 77) amn
— NM1-6a—06g)
de —_- A 75
5o =Ny, (20) R (39

where 6, is the fraction of adsorption sites occupied by spe-Note that in the limit3—, Eq. (38 has a single real posi-
cies i and the vacant site fraction obey8,=1—6, tive root that approaches tigzpoisoned stat@g=1. Except
— 60— 6c . If the total density of adsorption sites 8, the  in this asymptotic limit, the poisoned state is locally unstable
dimensionless time is given by=Kk3Syt and five dimension- and therefore it will not be considered further. For finite
less parameters are related to the adsorption and reaction ratalues of 8, Eq. (38 has either one or three real positive
constants, as shown in Table |. Notice that bethand 7 roots and some conditions exist for which a cusp bifurcation
depend primarily on the reaction and desorption rate coeffieccurs.
cients, which are generally functions of temperature. There- The bifurcation structure of Eq§2a—(2c) can be studied
fore, from a practical standpoint, it is not possible to manipu-with continuation techniques. The software packageo
late the value of either of these parameters withoutdeveloped by Doedel and Wan@5] was employed for this
simultaneously causing all other parameters to change gsurpose, and the reliability of the calculations was verified
well, since every dimensionless parameter depends upon thiy direct numerical integration of Eq&2a—(2c). Figure 1
reaction rate constant. In contrasat, 8, and\ are addition- shows a typical bifurcation diagram i3 parameter space.
ally proportional to concentrations of gas phase speciesThe cusp and loop structures are common features of both
which in principle can be varied independently. Thereforehomogeneous and heterogeneous chemical oscillators.
for fixed temperature, only, 8, and\ are appropriate bi- Fixed-point bistability boundarigsolid lineg are formed by
furcation parameters. a locus of saddle-node bifurcation points that terminate in a
As a consequence of the assumption Bgatadsorbs irre-  cusp. Hopf points form a loogbroken line$ that ends at
versibly, Eg.(2b) dictates that the adsorbed dimer can bedegenerate double-zero eigenvalue bifurcations on each
removed from the surface only by reaction. This leads to thesaddle-node branch. The Hopf and saddle-node points divide
existence of a trivialB-poisoned statedg=1,0,=60:-=0. parameter space into several regi@sme of which are very
AnalogousA- or C-poisoned states do not exist since adsorpsmal) with qualitatively distinct reaction-adsorption iso-
tion of these species is taken to be reversible. Nontriviatherms, and some of these regions can be subdivided further
steady-state solutions, can readily be found from Egs. by plotting the locus of limit cycle branch saddle nodes.
(28—(2c) and are given implicitly by
MEAN-FIELD PAIR APPROXIMATION

PE @ _1lp2
Ot 2,377(7\+’7)+27 1}03 A higher-order truncation of the hierarchical rate equa-
5 tions can be derived by considering the occupancy of neigh-
ay _ X e boring pairs of sites, which are assumed to be randomly
+ 2,877()”L mEyy=2)+ 2B Op=v"=0, (39 distributed on the surface. The resulting mean-field model is
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known as a pair approximatiofiPA) [1-3] and it accounts
for nearest-neighbor spatial correlations in the distribution of
reactants. One defineg; to be the number of pairs of sites k
occupied by speciesandj. Since a square lattice &f sites 0.8 0.1-]
with periodic boundaries has\2nearest-neighbor pairs, the : ]
fractional pair coverages are definedx@s=N;;/2N. Conser- ] ‘' 0.05]
vation equations for thi;; can be constructed by calculating 0.6} : ]
the rate of change of each pair type for each elementary step
of the mechanism. For example, dimer adsorptibh) oc-

curs at a rat&,X,,y and can be represented schematically as 0.4

X X X X
k2 0.2
XVV X — X B B X,

0.5

]
-
©
-
©
n
=]
N
=
N
N

X X X X 0

whereX represents a site that can be in any occupation state. B
Nearest-neighbor pairs that are potentially affected by this

process includeAV, BV, CV, VV, AB, BB, andBC. In FIG. 2. Reaction-adsorption isotherms showing the convergence
order to calculate changes in the pair coverages, oneé musf the pair approximation and site approximation at high hop rates
know the conditional PrObab".'t)P.(”') of finding a neigh-  when all adspecies have identical hopping rate constants. The
boring site in occupation stategiven a site in occupation curves from left to right represent the pair approximation with
statei. For a square lattice these probabilities are given by, /k;=0,1,10,50. The last curve shows the SA prediction. Solid
[1] lines represent stable fixed-point solutions, dashed lines represent
unstable fixed points, and dotted lines show maxima and minima of

Xij i stable limit cycle solutions. Other parameter values used to con-
20" ] struct the figure arer=1.6, y=0.04,A=0.36, and»=0.016.
P(ID=1 | (4)
Xi i
0,’ and the site approximation is recovered from the pair equa-

tions.

and the changes in pair coverage fractions follow easily from Computations using the PA equations described above
Eq. (4). For exampleB, adsorption can result in the loss of show that nearest-neighbor correlations can destroy the os-
at most sixAV pairs, so we write cillatory structures predicted by the SA. For example, Fig.2
shows reaction-adsorption isotherms calculated from the SA
and the PA for the case that all adspecies have identical
hopping constantsd(,=dg=dc). When no adsorbate hop-
ping is allowed, the PA predicts only fixed-point solutions.
where 6;=X;; +33;.;X;; . Proceeding in this way for each However, as the hopping constants are increased, the PA
elementary step of the reaction, dimensionless rate equatiofsedictions converge to the SA and oscillatory solutions are
for the evolution of the coverage of ten possible pair typegecovered. For the parameters used to construct Fig. 2, oscil-
can be derived. latory behavior was found for approximatedy/k;>10. No-

The intermediate behavior between the pair and site agtice that the pure pair approximatiod;& 0) predicts a small
proximations can be studied by incorporating surface transregion of bistability between a reactive andBapoisoned
port processes into the PA. For example, one can allow thetate. The existence of a discontinuous dimer poisoning tran-

dt |, 2N dt 20y

©)

hopping process sition in this model contrasts with the PA predictions for the
simpler monomer-dimer model, which exhibits a second-

X X d X X order dimer poisoning transition.
Y The PA predictions for the more general case of unequal

X Y v X X V.Y X, hopping rates have also been considered. For example, Fig. 3

shows reaction-adsorption isotherms for the three cases in
which only one adspecies is mobile; all other parameter val-

where Y represents an adspecies. Complete dimensionlesi€S are the same as in Fig. 2. Notice that the pair equations
P P : P 33l to predict oscillatory structures for all of these situations,

PA equations that include terms to account for adsorbat . )
hopping are given in the Appendix. From these, it can be?egardless of how large the hopping rate of the mobile ad-

shown that asl oo spatial fluctuations are destroved. the species becomes. Furthermore, the structure of the reaction-
) . i—%, SP yed, adsorption isotherms depends upon which species is taken to
pair fractions are given by

be mobile. For example, when the monoreis the hopping
20,0, i#] species, a re_gion of bistability gxists for all valu_esjgfa_nd

i=1 2 (6) dimer poisoning occurs at a finite value @f the dimension-
o7, 1=1, less partial pressure &,. In contrast, when the dissociated

X X X X

X
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. o . ) ) FIG. 4. Pair approximation predictions for the case in which

FIG. 3. Pair gpp_roxma_tlon predictions for the case in Wh_'Ch_onIy one adspecies is immobile and the hopping constants of the
only one .adsp.e(:les IS m.oblle. The adgorbeq monomer IS mobile 'Bther two species are identical. The adsorbed monomer is immobile
(&), the dimer 1S mobile irtb), and the |ner_t is mobile ic). The_ in (a), the dimer is immobile iffb), and the inert is immobile iKc).
three curves in each plot from left to right rgpresent reaction-rpe three curves in each plot from left to right represent reaction-
adsorption isotherms fat; /k;=1,10,100, respectively. Larger val- adsorption isotherms fod, /ks=1,10,100, respectively. Other pa-
ues of the dimensionless hopping constants do not give signiﬁcantlyam(_:‘terS are the same als thosel usled t(,) construct Fig. 2.
different results. Other parameters are the same as those used to

construct Fig. 2.

1 leads to an unfolding of the bistability loop. However, after
further increasingl, /k;=dg/k;=10, a hysteresis loop ap-
dimerB is taken as the mobile Species, multiple Steady Stateﬁears_ Subsequent increasegj}_{‘] and dB again unfold the
do not exist except when the hopping rate constintis  hysteresis loop and the limit cycle behavior predicted by the
nearly zero. SA emerges. In contrast, bistability is not observed in Fig.

Different results are obtained when it is assumed that onlyj(g) for any of the dimensionless hop rate constants consid-
one species is immobile while the other two species havered.

identical hopping rate constants. The results for the three

possible combinations are illustrated in Fig. 4. In all three

cases, the oscnla.to.ry dynamlcs 'predlcted by the SA can be LATTICE-GAS SIMULATIONS

recovered by sufficiently increasing the value of the hopping

rate constants. However, again the character of the reaction- In principle, higher-order truncations of the hierarchical
adsorption isotherms depends upon which species is taken tate equations, such as the triplet approximation, can also be
be immobile. As an example, consider the scenario where théeveloped. In practice, however, the resulting sets of equa-
inert monomerC is immobile. Figure &) shows that when tions are too unwieldy. Therefore, a stochastic lattice-gas
da/k;=dg/ks=1, a unique steady state exists for gl implementation of process€$a—(1d) was employed.

Since the pair equations with no surface hopping predict a A question that arises in developing any surface reaction
narrow region of bistability(Fig. 2), it appears that increas- lattice-gas simulation is how one relates the mean-field ex-
ing these two dimensionless hop rate constants from zero tfpressions for the rate of an elementary step of the reaction
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FIG. 5. Time series showing the effect of lattice size on lattice-
gas simulations with no nearest-neighbor requirements for both FIG. 6. Comparison of SA predictior{solid line) with lattice-
dimer adsorption and reaction. The solid line represents the SAas simulations when the nearest-neighbor requirement is retained
prediction. Other curves represent lattice-gas simulations on annly for a reaction(dotted ling and when it is retained only for
L XL periodic square lattice, for various valueslofas indicated.  dimer adsorptiodashed ling Parameter values used to construct
Parameter values used to construct the figurear20.8, =1.6, the figure arex=1.2, y=0.04,A=0.36, and»=0.016.
v=0.04,1\=0.36, and»=0.016.

Because multisite processes are responsible for the break-
mechanism to the rate at which a particular discrete everdown of the site approximation, it is of interest to determine
occurs in the lattice-gas simulation. This question has conthe relative importance of each such process in producing
siderable relevance because it is desirable to compare thiese deviations. This can be accomplished by eliminating
dynamic behavior of lattice-gas simulations with the predic-the NN requirement for either dimer adsorption or reaction,

tions of mean-field rate equations. while retaining the requirement for the other process. Predic-
The usual method for maintaining correspondence betions from such simulations are shown in Fig. 6 and they
tween the rate equations and the simulations involijese- illustrate the significantly different impacts that NN require-

lecting sites at random andi) attempting the various el- ments for dimer adsorption and reaction have on the overall
ementary processes with the appropriate probabilities at thieehavior. In particular, when the NN requirement for dimer
chosen sites. The algorithm implemented in this study readsorption is neglecteghis is similar to the random dimer
verses the above procedure. The rates of the elementary praesorption model introduced by Tammaro and EV{ArE),
cesses were first calculated by examining the state of thghe resulting reaction-adsorption isotherm closely approxi-
lattice. For example, the instantaneous rates of monomer antlates the SA prediction. In contrast, elimination of the NN
dimer adsorption were calculated a®,, and 28Xyy, re-  requirement for reaction leads to large discrepancies between
spectively. These rates were then used to select events withe lattice-gas simulations and the mean-field results. Most
appropriate probabilities, and the selected events were exwoticeably, the lattice-gas simulations predict a much lower
ecuted at suitable randomly chosen sites. By requiring thagteady-state surface coverage by the adsorbed dimer. The
one unit of Monte Carlo tim¢defined a<N iterations of the reason for this large deviation is that NN reactions are a
algorithm, whereN is the total number of lattice sitesor-  source of NN vacancies; the presence of the latter is neces-
respond to one unit of dimensionless timeit was possible  sary for dimer adsorption to proceed. In the present case the
to execute events in the simulation randomly, but also in aemoval of the NN requirement for reaction results in the
manner that preserved the meanings of the dimensionleggoduction of far fewer vacant pairs suitable for dimer ad-
rate constants used in the mean-field formulations. sorption. These observations suggest tfat the parameter
The simulation was first tested by ignoring spatial corre-set studiegithe NN requirement for dimer adsorption is the
lations on the lattice. This was accomplished by eliminatingmajor cause of the breakdown of the site approximation.
the nearest-neighbdNN) requirements for dimer adsorption ~ When the NN requirements for both dimer adsorption and
and monomer-dimer reaction, thereby resulting in a stochageaction are retained, behavior similar to that exhibited by
tic implementation of the SA equations. Representativehe pair approximation is found. For example, Fig. 7 illus-
simulations are presented in Fig. 5, which shows the effectrates the effects of allowing adspecies to hop to nearest-
of lattice size on time series predictions for a case in whicteighbor vacant sites, for the cadg=dg=dc. The result-
the SA yields limit cycle oscillations. Notice that as the lat-ing reaction-adsorption isotherms are nearly identical to
tice size(and therefore the statistical basecreases, statis- those predicted by the pair equations for the same parameter
tical fluctuations decrease and the lattice-gas simulations aget(Fig. 2). However, because the lattice-gas simulations are
proach the mean-field SA predictions. These findings agresusceptible to random fluctuations, it can be difficult to de-
with the expectation that deviations from the mean-field siteect the onset of kinetic oscillations. Therefore, three curves
approximation are caused by multisite processes and, for ffor each value of the dimensionless hopping constant were
nite systems, statistical fluctuations. plotted in Fig. 7. The central curvébroken lineg represent
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pects that the minimum value of the macroscopic surface
diffusion coefficient required to observe oscillations for this
reaction model is given by

D~ 10ksl2. (8

SUMMARY AND DISCUSSION

Three approaches have been employed to model a simple
Langmuir-Hinshelwood reaction(i) traditional mean-field
site approximation rate equation§i) mean-field pair ap-
proximation rate equations, arii) lattice-gas simulations.
The oscillatory solutions predicted by the mean-field SA rate
equations are not robust with respect to spatial correlations;
both the PA equationévhich account for nearest-neighbor
correlation$ and the lattice-gas simulatiorieshich account

FIG. 7. Reaction-adsorption isotherms showing the convergencfor correlations on all length scalesail to duplicate the
of the lattice-gas simulations and the site approximation when alperiodic solutions.
adspecies have identical hopping rate constants. The curves from The crossover behavior between the latter approaches and
left to right show lattice-gas results far /k;=0,1,4,16. The last the SA was studied by incorporating an adspecies hopping
curve shows the SA prediction. For each lattice-gas simulationmechanism. The structure of the kinetics for these interme-
three lines are plotted. The central liashed represents the time-  diate degrees of “mixing” on the surface depends sensi-
averagedB coverage at steady state; these are bracketed by solitively upon both the relative and absolute mobilities of the
lines that are the time-averaged coveragthe variance divided by  adspecies. Specifically, when all adspecies are mobile, the
the mean. Parameter values used to construct the figure are the saiedictions of the SA, including kinetic oscillations, can be
as for Fig. 2. recovered when the ratio of the hopping constant to the re-

action rate constant approximately satisfi#k;>10. How-

ever, if only one adspecies has significant surface mobility,
the time-averaged steady-st&8ecoverage; each of these is the SA solutions cannot be approached even as the ratio of
bracketed by two solid curves that represent the timethe hopping constant to the reaction rate constant becomes
averaged coverage plésinug the variance divided by the very large. These findings suggest that the use of SA rate
mean. Figure 7 clearly shows that large excursions from thequations to model real surface reaction schemes may not be
time-averaged coveragmdicative of kinetic oscillationsdo  appropriate when one or more species is strongly adsorbed.
not emerge untid; /k; is increased te= 16, which is similar A comparison of the PA and lattice-gas results reveals
to the value ofl; /ks~ 10 found from the pair approximation. little qualitative difference(apart from the random fluctua-
Also, notice that the discontinuous dimer poisoning transitions inherent in the lattice-gas simulatjoand only small
tion predicted by the pair equations for low hop rates is alsmumerical discrepancies between their predictions. This ap-
observed in the lattice-gas simulations. parent similarity is a consequence of the fact that the reaction
mechanism involves only single- and dual-site processes;
one might expect that greater disparity between the PA and
the lattice-gas simulations would be observed for reaction
mechanisms with processes involving three or more neigh-
boring sites.

The adsorbate hopping mechanism employed in the Finally, we note that the destruction of oscillatory behav-
lattice-gas simulations and in the pair approximation can béor with the introduction of spatial correlations in the present
related to Fickian diffusion by either solving the problem of model contrasts with analogous studies of predator-prey ki-
random walk or by following the analysis of Kutngt7].  netics. In particular, Satulovsky and Torhave shown that
The hopping constart (assumed to be identical for all spe- the breakdown of the mean-field approximation can lead to
cies is directly proportional to the diffusivitY through the the introduction of periodic behavior in a system that would
relation otherwise only display fixed-point solutiori48]. This im-
plies that the consequences of introducing spatial correla-
tions in surface reaction kinetics may depend strongly on the

D details of the reaction mechanism.
d=1z. @)

MINIMUM DIFFUSION COEFFICIENT
FOR OSCILLATIONS
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APPENDIX: GENERALIZED DIMENSIONLESS PAIR Xay Xay| 30cXey(Xse Xay
APPROXIMATION EQUATIONS ——— |t (A5)
0 Oy 2 0 Oy
dXav 3XaeXan  3Xis
—= + + +
dat 29%wF2yXant mXac O 20g dXes N 3BXvwXgy  3XapXss
38X 3X 30aX dt ~ 2P7W 26 6
SV P BXyy AB|  STA%AV vV B
20V 20A 2 " SO-BXBV XBV ZXBB A6
% ZXAA+2XVV_&_X_AV 30Xpy 2 Oy g |’ (AB)
Oa 6y 60, Oy 2
v (@_ @) n 3UCXCV(E_ Xi/) (Al) dXBC:)\X B X " SBXVVXCV_ 3XABXBC
7 by 2 bc Oy )’ dt BV #78C 20y 20g
dXan 3XaeXan N SUBXBV(Xﬁ/ _ @)
gt - @XavT2yXaa Ton 2 Oy  6p
+ 30—AXAV XAV 2XAA A2 + M(Xi/_ @) , (A7)
2 9_v_ on |’ (A2) 2 Oy Oc
dXap 3BXaXyy 3Xig/ 1 1 dXcy
T:ava_(7+l)xAB+ 20, 2 \0x g at =2 Xyyt+29Xcct ¥Xac— (a+ N+ 1) Xcy
3oaXav ([ Xgy  Xag 30Xy | Xav  Xag 3BXwWXcv  3Xag(Xec  Xac
RS (S —— + i I — j— —_— e —
2 0y  Oa 2 oy 0g) 26y 2 g O
(A3) L 37 %av(Xac_ Xev|  308Xay(Xsc  Xov
2 O Oy 2 Og Oy
dXac 3XasXac
T=axcv+ AXay— (Y+ ) Xac— Y 3ocXev[2Xece  2Xww - Xev  Xev
g o e e e e 8P
c v c vV
30’AXAV(XCV XAC) 3U'CXCV(XAV XAC)
- —— |+ ——| =],
2 HV HA 2 0V 0C dXCC:)\X _2 X n 30’CXCV Xﬁl_ 2XCC (Ag)
(A4) dt S A o 6c |
dXgy 3X3g
gt~ VXt 7Xac (a+N)Xgy 20, D X =1. (A10)
3BXvv 3XaB
+ T(vav_ Xgy) + W(ZXBB_ Xgv) _ _ _
e dimensioniess parameters n — are de-
v B The d I EGs1)—(A9) d
N 30’AXAV(@_ Xi/ 3UBXBV(2XBB+ 2Xyy fined as a=k;palks, ﬁ=k2p52/k3, y=k_q/Ksg,
2 0A 0V 2 93 0V )\:k4pc/k3, ﬂ:k_4/k3, andO’i:di/k3.
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